EAP
链路层框架
EAP typically runs directly over data link layers such as Point-to-Point Protocol (PPP) or IEEE 802, without requiring IP. EAP provides its own support for duplicate elimination and retransmission, but is reliant on lower layer ordering guarantees. Fragmentation is not supported within EAP itself; however, individual EAP methods may support this.
EAP encapsulation on IEEE 802 wired media is described in [IEEE-802.1X], and encapsulation on IEEE wireless LANs in [IEEE-802.11i]
The EAP authentication exchange proceeds as follows:
[1] The authenticator sends a Request to authenticate the peer. The Request has a Type field to indicate what is being requested. Examples of Request Types include Identity, MD5-challenge, etc. The MD5-challenge Type corresponds closely to the CHAP authentication protocol [RFC1994]. Typically, the authenticator will send an initial Identity Request; however, an initial Identity Request is not required, and MAY be bypassed. For example, the identity may not be required where it is determined by the port to which the peer has connected (leased lines, dedicated switch or dial-up ports), or where the identity is obtained in another fashion (via calling station identity or MAC address, in the Name field of the MD5-Challenge Response, etc.). [2] The peer sends a Response packet in reply to a valid Request. As with the Request packet, the Response packet contains a Type field, which corresponds to the Type field of the Request. [3] The authenticator sends an additional Request packet, and the peer replies with a Response. The sequence of Requests and Responses continues as long as needed. EAP is a 'lock step' protocol, so that other than the initial Request, a new Request cannot be sent prior to receiving a valid Response. The authenticator is responsible for retransmitting requests as described in Section 4.1. After a suitable number of retransmissions, the authenticator SHOULD end the EAP conversation. The authenticator MUST NOT send a Success or Failure packet when retransmitting or when it fails to get a response from the peer. [4] The conversation continues until the authenticator cannot authenticate the peer (unacceptable Responses to one or more Requests), in which case the authenticator implementation MUST transmit an EAP Failure (Code 4). Alternatively, the authentication conversation can continue until the authenticator determines that successful authentication has occurred, in which case the authenticator MUST transmit an EAP Success (Code 3).
Advantages:
o The EAP protocol can support multiple authentication mechanisms without having to pre-negotiate a particular one. o Network Access Server (NAS) devices (e.g., a switch or access point) do not have to understand each authentication method and MAY act as a pass-through agent for a backend authentication server. Support for pass-through is optional. An authenticator MAY authenticate local peers, while at the same time acting as a pass-through for non-local peers and authentication methods it does not implement locally. o Separation of the authenticator from the backend authentication server simplifies credentials management and policy decision making.
An EAP conversation MAY utilize a sequence of methods. A common example of this is an Identity request followed by a single EAP authentication method such as an MD5-Challenge. However, the peer and authenticator MUST utilize only one authentication method (Type 4 or greater) within an EAP conversation, after which the authenticator MUST send a Success or Failure packet.